skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ryan, Kenny J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dynamic rupture models are physics-based simulations that couple fracture mechanics to wave propagation and are used to explain specific earthquake observations or to generate a suite of predictions to understand the influence of frictional, geometrical, stress, and material parameters. These simulations can model single earthquakes or multiple earthquake cycles. The objective of this article is to provide a self-contained and practical guide for students starting in the field of earthquake dynamics. Senior researchers who are interested in learning the first-order constraints and general approaches to dynamic rupture problems will also benefit. We believe this guide is timely given the recent growth of computational resources and the range of sophisticated modeling software that are now available. We start with a succinct discussion of the essential physics of earthquake rupture propagation and walk the reader through the main concepts in dynamic rupture model design. We briefly touch on fully dynamic earthquake cycle models but leave the details of this topic for other publications. We also highlight examples throughout that demonstrate the use of dynamic rupture models to investigate various aspects of the faulting process. 
    more » « less